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ABSTRACT

An approach is presented to treat computational

aerodynamics as a process, subject to the fundamental

quality assurance principles of process control and

process improvement. We consider several aspects

affecting uncertainty for the computational
aerodynamic process and present a set of stages to

determine the level of management required to meet

risk assumptions desired by the customer of the

predictions•
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leading-edge-radius to chord ratio

chord Reynolds number, Uooc/v
Statistical Process Control

Verification and Validation

INTRODUCTION

Computational aerodynamics has a rich and long

history as methods have evolved hand-in-glove with

the evolution of high-speed computing. These
methods are anchored in fluid mechanical and

aerodynamic theory, and a hierarchy of techniques

has been developed over many decades that differ

primarily in fidelity, flow physics representation, and
computational efficiency. Although most current

work is focused on Computational Fluid Dynamics

(CFD), Computational Aerodynamics (CA) embraces
a broader scope than CFD. Computational

Aerodynamics has as an end objective the

development of full-scale vehicle capability as well as
the a-priori prediction of the full-scale vehicle

properties. As such, this entails the use of one or

more CFD methods, reduced physics methods,

prediction or extrapolation techniques, and
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calibration information that can come from

experimentation. The particular suite of methods
_lsed for CA is driven by a combination of technical

issues (such as method capability) and business
factors (such as schedule, resource limitations,

historical approach, etc.)

l'wo contrasting views toward computational

aerodynamics are presented in Figure 1 [Zang 2002,

and Wahls 2002] in the context of computational

fluid dynamics. In this figure, CFD utility is

dlustrated for a notional full-envelope range of
vehicle operating conditions. Figure I a illustrates the

current or traditional approach to CFD that is
characteristic of deterministic CFD. Here, CFD is

illustrated to provide trusted predictions (acceptable

accuracy) for both low-speed and cruise attached-
flow aerodynamics. This has resulted from sustained

modeling efforts of these flows. However, separated

and unsteady flow effects can be important for a

significant fraction of the overall flight envelope.
Modeling for separated and unsteady flows has

proven to be a daunting task (as have experimental
studies), and as such CFD has not demonstrated

sufficient accuracy for these flows.

An alternate view is presented in Figure l b and is
referred to as uncertainty-based CFD. This view is

the focus of the present paper. Emphasis with this

approach is placed upon quantifying the uncertainty

of computational aerodynamic methods throughout

the flight domain. This means quantifying not only
the value of some prediction (e.g., lift), but also the
error bounds and confidence level associated with

such a prediction, and doing so in the context of a

well-defined and repeatable process. Because
accuracy requirements are not necessarily as stringent

in the whole envelope as they are at cruise conditions,

the uncertainty-based CFD results could provide the
confidence needed to address off-cruise-condition

requirements. Such information can also then be
related to risk issues for a decision maker in the

context of vehicle design, development, or

modification processes.
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The overall goal for computational aerodynamics
uncertainty therefore is to establish a process to

produce credible, quantified, unambiguous, and

enduring statements of computational uncertainty for

aerodynamic methods. We also anticipate that, with
such a process, the quality of aerodynamic

predictions could be assured the first time the process

is performed, such that the current practice of

adjusting computations to match experimental

findings could be greatly reduced or even eliminated.
Under these circumstances, computational

aerodynamics could be more heavily relied upon for

aerodynamic predictions.

To achieve confidence in aerodynamic predictions

will require confidence in error bounds. We need to

quantify the error bounds as they presently exist and
also understand the sources and mechanisms of the

error. The impact of these uncertainties is a separate
consideration and more the concern of the customer

of the computational predictions. Mission priorities
then dictate which error bounds warrant further
research and reduction.

Here we are drawing a clear distinction between the
Voice of Customer and the Voice of the Process as

enunciated by Wheeler and Chambers [1992]. The
Voice of the Customer is the specifications required,

including tolerances. The Voice of the Process for an

overall computational aerodynamics result would be

what the computational process produces, including
uncertainties, as long as the process continues to

operate stably. These two Voices must be considered

and dealt with separately if the notion of uncertainty-
based CA is to be useful. It should be noted that the

Voice of the Process has no meaning if the process is

not stable [Wheeler and Chambers 1992].

For example, the AIAA Applied Aero Technical

Committee conducted a Drag Prediction Workshop in

2001 to evaluate CFD prediction of transonic cruise

drag predictions for transport configurations.
Workshop participants calculated forces and

moments on the DLR-F4 transport model at the

nominal cruise condition. This configuration was
chosen because there were data available from three

different wind tunnels. A total of 35 flow solutions

were contributed from 14 different CFD codes

ranging from research codes to commercially

available codes. Hemsch [2002] performed a
statistical analysis of the results and determined that

the CFD results exhibit a 2-sigma confidence interval

of roughly +/- 40 counts of drag (1 count of drag

corresponds to a Co change of 0.0001) at the cruise
condition and the experimental data exhibits a 2-

sigma confidence interval of roughly +/- 8 counts.

These results represent the Voice of the Process.

Aircraft manufacturers report that they require drag

predictions within +/- 1 count of drag. This represents

the Voice of the Customer. Clearly, neither the CFD

predictions nor the wind tunnel data are capable of
meeting this requirement.

In almost all cases, process improvement requires two

steps: first, elimination of assignable causes in order
to create a stable, predictable process and second,

modification of the process, if necessary, to reduce

the residual variation. The DPW workshop

participants identified that the grids used for the

predictions were inadequate. For this particular
application, lack of grid convergence led to an

unpredictable process (14% of the solutions were
outside the statistical limit boundaries of the core

solutions) and to process variation considerably
larger than required (+/- 40 counts versus +/- l count

respectively.) This issue is being addressed in the

second AIAA Drag Prediction Workshop scheduled
for the summer of 2003. The results of the first

workshop clearly indicate the need for more rigorous

processes to quantify and manage uncertainty for

computational aerodynamics.

Computational uncertainty assessments embrace a

variety of technologies and issues. In the next

section, we review some critical CA uncertainty

process considerations. In the following section, we
discuss fundamental management issues for

implementing the CA uncertainty process in different

risk assumption environments.

PROCESS CONSIDERATIONS

Some considerations of prediction will first be
reviewed. This is followed by a discussion of

inferences that may be drawn from the computational

simulation. Finally, a list of verification, validation

and uncertainty elements is presented.

Prediction to Unvalidated Conditions

Prediction has at least three different usages in terms
of computational aerodynamics. First, there is a

computational prediction for a point-wise match to

data from an independent source. Here, we often see

an a-posteriori comparison of a computation (usually

CFD) against experiment. Second, prediction is used
in the sense of interpolation to conditions that fall

within those already anchored by a comparison

between the computation and benchmark information.

Third, prediction is used in the sense of an
extrapolation to conditions that fall outside the

domain for which the computation is anchored by
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independent data. This last form of prediction is the

most desired and, unfortunately, usually comes with

the highest uncertainty.

This extrapolation form of prediction (e.g., from
ground-based to full-scale Reynolds number) entails

many other considerations separate from traditional
verification and validation issues. As such there can

be separate and distinct sources of uncertainty

associated with the prediction process itself. These

include issues that could range from ground-based

test technique concerns (e.g., wind-tunnel wall
interference, etc.) to full-scale vehicle medium

uncertainty, such as for planetary entry.

Trucano [1998] brought a noteworthy perspective

toward prediction by emphasizing the consequences

associated with prediction uncertainty. This helps
establish how much confidence is needed in the error

estimate. Consequences in the prediction (or full-

scale) domain need to be considered heavily in setting

priorities for which problems get worked, and how
they are worked. There may be high consequence

issues, with relatively simple physics, that would be

more important to address than lower consequence

issues that would none-the-less require sophisticated
computational technology. For example, late in the

Shuttle development program there were lingering

concerns for tile loads, including those due to the

flow in the gaps between the tiles. Dwoyer et al

[1982] demonstrated that this flow could be modeled
with the Stokes flow approximation and obtained

sufficiently accurate simulations in time to contribute

to the resolution of this program concern.

The extrapolation form of prediction from

computational aerodynamic methods naturally leads

to inference space considerations. The nature of the

inference space, as a context to the computational
predictions, can significantly affect the underlying

uncertainty of these predictions.

Inference Space

Aerodynamic flow domains provide a useful context

to perform aerodynamic inferences. This leads to the
more general concept of a physics-based inference

space.

A simple example of flow domain considerations is
taken from Polhamus [1996] for airfoil stall

characteristics, Figure 2. In this work Polhamus

retained the stall characterization developed by Gault
[ 1957]. Figure 2a shows three of these distinctions as

being: i) thin-airfoil stall, ii) leading-edge stall, iii)

trailing-edge/leading-edge stall, and not shown is iv)

tlailing-edge stall. As the flow sketches indicate, the

flow physics of each of these classifications is quite

d_fferent, and the consequences on the lift properties

near Cl,_x are also quite different. The ability of a

computational method to predict one of these classes

of stall would not necessarily imply that it could
predict the other classes since the underlying flow

physics are different in each case.

Polhamus modeled the airfoil stall flow types in terms

of two parameters, airfoil leading-edge radius and

chord Reynolds number as shown in Figure 2b. The
data for this figure are from the NACA 6-series of

airfoils, and, subject to the available data, Polhamus
estimated boundaries between the various stall

classifications. It is hypothesized that one can have
i_lcreased confidence extrapolating a validated (or

calibrated) computational method in the parameter-

space variables (r/c and R_ in this example) to

_onditions beyond the validation conditions so long
as a domain boundary is not crossed. The domains,

as shown in Figure 2b, are examples of what

constitutes a physics-based inference space. It is

interesting that with this view toward a physics-based

inference space, a direct link between basic flow
physics (e.g., turbulent reseparation) and aggregate

aerodynamic properties, like CLm_x, are readily

established. Having the critical physics linked to

prediction metrics (like Ctm_) is not only crucial to
method validation, but also should greatly reduce the

ancertainty in these predictions.

Fhe fact that there are flow domains is nothing new.
Examples can be found for many flow considerations,

:_uch as the work of Stanbrook and Squire [1965] and

later Miller and Wood [1985] who established

domains of supersonic leading-edge vortex separation

and subsequent classes of shock-vortex structures.
What is new is the approach of exploiting these

domains, and building new domain knowledge, in the

context of computational uncertainty and inference of
prediction uncertainty. These domains, or physics-

based inference spaces, generally exist in a similarity

space within which we hypothesize that extrapolation

becomes tractable with greatly reduced uncertainty as
compared to other means.

Transformation from primitive to similarity variables
generally results in reduced dimensionality for both

independent and dependent variables. Although a

simple example of this reduced dimensionality is
given by transonic similarity, examples for more

complex flows have also been developed. For

example, Stahara [ 1981 ] used the concept of strained

coordinates [Lighthill 1949] to demonstrate the utility
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of similarity-based methodology for predicting
transonic airfoil aerodynamics with or without flow

discontinuities. However, the flows must be

topologically similar.

The method of strained coordinate used by Stahara

[ 1981 ] can be useful in determining the uncertainty of
a solution where no validation data exists, provided

that the flows are topologically similar and the

interpolation remains in a physics-based inference

space. First, determine the uncertainty at two points

within the physics based inference space where
validation data exists using error propagation or N-

version testing. Then apply the method of strained

coordinates to interpolate this uncertainty to the new

solution point.

Crucial knowledge for a physics-based inference

space to be useful comes down to i) knowledge of the

underlying flow physics to the aerodynamic topic of
interest (which could be anchored in theoretical or

experimental considerations) and ii) knowledge of the

boundary region for said physics. This emphasis on
physics-based boundary regions between

aerodynamic flow states could present a new view

toward aerodynamic testing for the purposes of code

calibration and validation. A simple example is the
establishment of the boundary between attached-flow

cruise aerodynamics and separated flow for a given

vehicle class. Data for the onset of separation would

be useful for enhancing prediction confidence within

the attached flow domain. The data could also guide
the development of boundary prediction methodology

to further reduce the uncertainty associated with state-

change flow physics.

If a physics-based inference space is bounded, that is,

if the boundary is established (say, experimentally)

then it may be possible to validate the CA code within
that domain. However, in an unbounded inference

space a CA code can at best be validated at discrete

flow conditions. Predictive capability within the

bounded physics-based inference space should be
possible with much higher confidence. These ideas

are abstracted in Figure 3. Computational uncertainty

near domain boundaries will certainly be higher than
in the interior, not only because of the more complex

state-change physics, but also because of the inherent

uncertainty of the conditions causing this change of

state (i.e., the parameter space range of the

boundary). Physics to model and eventually predict
these boundaries will in most cases be the hardest

capability to be developed and thus may depend the

most heavily on experimental technology or more
advanced numerical simulation.

The boundary may be analogous to the intermediate

solution in an asymptotic expansion. It provides a

neighborhood through which the solutions match

(consider, for example, the overlap region in the log-

law/law of the wall from turbulent boundary layer

theory). The scale/extent of the boundary will be
different for different flows, and this scale itself will
be a metric of interest. The boundaries of the

inference spaces more than likely manifest higher-

order flow physics with corresponding implications
on computational uncertainty - the closer a solution is

to a boundary the higher the likely uncertainty,

especially if the location of the boundary cannot be

predicted exactly.

The approach of validating computational
aerodynamic techniques in the context of a physics-

based inference space could have significant

consequences for inferences that must be drawn in

extrapolating from experimental test conditions to
full-scale application conditions. Figure 4 illustrates

that testing generally includes sub-scale conditions
from which inferences must be drawn for the full-

scale vehicle application. (Easterling [2001] has

published a more sophisticated treatment of this

topic). As one practical example, consider
extrapolating in Reynolds number from wind tunnel

to flight conditions. As illustrated in Figure 4, an

extrapolation in the sense of parameter-based

inference space can essentially become an

interpolation in the sense of a physics-based inference

space.

The nature of ground-based testing would most likely

be altered to support the physics-based inference
space approach to extrapolation. For the Reynolds

number scaling example, wind tunnel data would

need to be obtained at sufficiently high values to

assure that the full-scale flow physics were fully
established, albeit at subscale values. Computational

techniques, validated with these data, and in the

context of the physics-based inference space (e.g.,
fully turbulent transonic attached flow) could then be

used as shown in Figure 4b. It is anticipated that this

approach could greatly reduce the uncertainty

associated with full-scale aerodynamic predictions.

4

Two facets of the physics-based inference approach

to computational aerodynamic uncertainty could

contribute to reduce ground-based testing
requirements. First, the coupling of the physics-based

inference space approach and aerodynamic similarity

principles could be highly desirable as a means to

reduce test conditions. Second, Modem Design of
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Experiments principles could also be highly effective
within the physics-based inference space to further

reduce test condition requirements [DeLoach 1998].

Verification and Validation Elements

The AIAA definitions for verification and validation

are given as follows [AIAA Guide]:

Verification: The process of determining that a

model implementation accurately represents the

developer's conceptual model and the solution to the
model.

Validation: The process of determining the degree to

which a model is an accurate representation of the

real world from the perspective of the intended uses
of the model.

The quantification of uncertainty in a numerical

prediction can be broken down into several sources.

We use the following four sources: method V&V,
process control, parameter uncertainty, and model

form uncertainty (Figure 5). Here we use method

V&V to distinguish sub-process V&V (such as for a

CFD code) from the overall V&V process as defined

in the AIAA guide. Method V&V and process
control are primarily concerned with the

quantification and control of numerical errors and

uncertainty. Parameter and model form uncertainty

are concerned with quantification of uncertainty in

the physical process being modeled.

Method V&V. Code verification and validation are

necessary first steps in quantifying uncertainty.

Roache [1997] distinguishes between verification and
validation of a code and verification of a solution.

Roache [1998] states "Verification is completed (at

least in principle, first for the code, then for a
particular calculation) whereas Validation is ongoing

(as experiments are improved an&'or parameter

ranges are extended)."

Code verification is a process to ensure that the

model equations are solved correctly. The Method of

Manufactured Solutions [Roache 1998] is a powerful
technique for code verification. A non-trivial

solution is specified and forcing functions added to

the governing PDEs to satisfy this solution. A grid

convergence study then verifies the order of accuracy

of the code [Salari and Knupp 2000].

However, the use of a verified code is insufficient. A

grid convergence study is required to estimate the

error on new calculations. Additionally, a grid
convergence study should be used to check that the

order of convergence on the new prediction matches

the advertised accuracy of the code. A reduced order

of accuracy is an indication of an error in the

calculation. Roache [1997] gives several examples of
calculations where an esoteric error in a new code

application resulted in a reduced order of accuracy.

Grid convergence studies (extending into the

asymptotic range) using verified codes are the most
common and direct method to quantify numerical

uncertainty.

Process UncertainD'. CFD code application remains
a labor-intensive activity. The process requires

specification of (usually) complex geometry and

discretization of the flow volume. The practitioner

must make appropriate decisions about the flow

physics (incompressible or compressible, laminar,
_:ransitional or turbulent, etc.) and choose appropriate

physical models. Budgets and deadlines limit the

resources available for the analysis and prevent the

analyst from exploring alternate models. Simple
errors in input decks can invalidate the results.

Process control, in the sense of modem quality

assurance, not only minimizes the blunders due to

misapplication of codes and simple user errors, but it
also enables the creation and management of a stable,

predictable process with known variation - the target

of Figure lb. We believe that generally available best

practices (e.g., ERCOFTAC [2000], Chen [2002])

will provide a foundation for developing and
establishing such processes.

5

Parameter Uncertainty, The conceptual model that

is implemented in a computer code is an idealization

of the physical world that it is used to model. For
cxample, manufactured vehicles vary from the design
specifications with each vehicle being slightly

different, aircraft deformations under load are

difficult to accurately measure or predict, physical

properties vary or are difficult to estimate. The
aeroelastic deformation of a wing in flight can have a

large effect on the resulting flowfield. It is important

that the actual aeroelastic shape of the aircraft be

incorporated in the numerical model to accurately
predict the flow. The uncertainty in this deformation

can be accommodated using error propagation

techniques. Additionally, there is uncertainty in the

value of physical constants (e.g. thermal conductivity,

viscosity, specific heats, etc.) that can be important
fi_r some classes of problems. Several techniques

exist to propagate the effects of these variations on

system response; sensitivity analysis, Monte-Carlo,
aad polynomial chaos among them [Hills and

"I rucano 1999, Waiters 2003]. For example, Pelletier
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et al. [2002] showed the effect of geometric

uncertainty and physical constant uncertainty on the

validation study of a laminar free-convection problem

with variable fluid properties.

Model Form Uncertainty. Validation is

confirmatory evidence that the conceptual model is an

adequate representation of the physical process for
the intended use of the model. Model form

uncertainty is a quantification of a model's predictive

accuracy.

Current modeling efforts focus on unit problems.

Models are typically developed from theory,
validated on unit problems and then tested on more

complex configurations. The resulting model

becomes widely accepted when a sufficiently large

number of unit problems and configurations have

been computed with results equivalent or better than
the previous best model. This ad hoc procedure for

model acceptance does not provide an estimate of

uncertainty for model predictions. A framework
needs to be developed to provide quantification for

model form uncertainty. Very little work has been

done in this area [Hills and Trucano 1999, Luis and

McLaughlin 1992].

There is some ambiguity whether certain sources of

uncertainty should be classified as parameter

uncertainty or model form uncertainty. We have
chosen to classify physical constants under parameter

uncertainty. However, we feel that model
coefficients, such as used in turbulence models, are

part of the model and must be considered as part of

model form uncertainty.

Interrelationships among Uncertainty Sources.

Although the uncertainty sources of Figure 5 each
have unique aspects, it is important to acknowledge

that they also interact and affect one another. Our
current view of these interactions is shown in Figure

6. Also included in this figure are a number of

additional key topics (not shown in Figure 5) that

contribute to aerodynamic prediction uncertainty.

The Three Aspects of any CA Output and Their
Relationship to Statistical Process Control

In the CA uncertainty process, there are

fundamentally two aspects to every number of
importance that is generated as part of the code

output: (l) the generated value itself and (2) the
difference between the so-called true value and the

generated value, i.e. the error. However, in all
practical cases of interest, the true value is not known

and, hence, the error is also unknown. To deal with

this issue statistically, we would define a

computational process. But now there are necessarily

three aspects to every process output value: (l) the

average of the sample realizations of the process,
which is the estimate of the population mean, (2) the

sample standard deviation, which is the estimate of

the population standard deviation, and (3) the number
of realizations, which reflects how well the

population parameters are known.

The CA uncertainty process is concerned with aspects

(2) and (3) whether they are known qualitatively or
quantitatively. The risk for a decision maker is not
associated with the value itself nor even the size of

the standard deviation since modem probabilistic

methods, at least in principle, can propagate those
effects, but rather how well the second value is
known.

For the last four decades, methods for building
confidence in the second and third aspects have been

developed for precision metrology by the National

Institute for Standards and Technology (fIST) and its
predecessor, the National Bureau of Standards (NBS)

[Eisenhart 1969]. Those methods, which are based

on the notions of statistical process control (SPC)

used in manufacturing [Wheeler and Chambers

1992], have been recently adapted to force and
moment testing in wind tunnels [Hemsch et al. 2000].

We suggest that the CFD community consider such
methods for improving the CA uncertainty process.

A qualitative definition of SPC for measurement

processes is given below followed by a more

mathematical version [Belanger 1984]:

PROCESS MANAGEMENT

The two sections below provide an approach for
moving toward uncertainty-based computational

aerodynamics. The first section regards relationships

between computational output and Statistical Process

Control. The second section addresses management
and risk considerations.

A measurement process is in a state of statistical

control if the amount of scatter in the data from

repeated measurements of the same item over a
period of time does not change with time and if there

are no sudden shifts or drift in the data. (Qualitative)

A measurement process is in a state of statistical

control if the resulting observations from the process,
when collected under any fixed experimental

conditions within the scope of the a priori well-
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defined conditions of the measurement process,

behave like random drawings from some fixed

distribution with fixed location (mean) and fixed

scale (standard deviation) parameters. (Quantitative)

For the purposes of CA uncertainty, we would

consider the sources of error to be different grids,
observers, codes, turbulence models, etc.

Management of the CA Uncertainty Process for
Decision Makers and for Resource Allocation

It has been our experience that effective response of

stakeholders (funders, managers and workers) to CA

uncertainty issues is largely a function of their
understanding of the present state of their CA

uncertainty process either for an individual software

development project or for a vehicle design effort or

for the organization as a whole. It may be less well

known that it is also a function of their knowledge of
potential CA uncertainty stages. We propose in this

section a particularly simple way to consider and

display those stages to stakeholders. Knowing where

the organization or project is relative to those stages
and the actions required for each one makes it

possible to allocate resources effectively, particularly

if the risk state that the customer is willing to assume
is clear.

It is convenient to think of the decision maker as the

customer of the CA uncertainty process and their

desired risk assumption level as the Voice of the

Customer, a term from the Statistical Quality Control

literature [Wheeler and Chambers 1992]. In
manufacturing, the Voice of the Customer might be a

specified tolerance interval defined by a design

department. Similarly, we could call the actual
performance of the CA uncertainty effort, the Voice

of the Process. Again, in manufacturing, the Voice of

the Process might represent the actual variation in the

output from a series of manufacturing steps [Wheeler
and Chambers 1992].

Below we offer five representative CA uncertainty
stages and correlate them with decision-maker risk

assumption level. Readers who are familiar with the

Software Capability Maturity Model [Paulk et al
1993] or the Process Maturity Model [Gardner 2001]

will recognize that the CA uncertainty stages share
some, but not all, of their features. Consider the five

possible stages shown in Figure 7. They are:

1. No systematic uncertainty effort. Activity in

this stage is best described as ad hoc. Success

depends upon the experience of particular

individuals acting alone or as a team. It would

be reasonable to expect to find research efforts at

this level, particularly when entirely new code
functionality is being attempted. For this level, it

is impossible for decision makers to assess their

risk assumption level.

2, Uncertainty management. At this stage,
considerable effort is made to keep the error of

code predictions within target bounds but any

uncertainty statements are best characterized as

qualitative. For example, if an uncertainty band

is given, the precise coverage level and how well
it is known are left unstated. It is probable that,

when resources are not available to drive grid

convergence into the asymptotic region, this is

the best level attainable unless the processes have
been demonstrated to be in statistical control

[Wheeler and Chambers 1992]. The Boeing

Company has developed a particular philosophy

for this stage and shown its value for the airframe

aero design process [Rubbert 1998]. At this
level, a decision maker would typically have

precedent as a guide in assessing the risk

assumption level. It is also likely that the
decision maker will include safety factors and/or

margins to reduce the consequences of the

insufficiently known uncertainty. For this stage

there is basic project management to repeat

earlier successes on projects with similar
applications.

. Reported uncertainty. At this stage, the CA

uncertainty process is capable of reporting a

quantitative uncertainty band, together with the
coverage level and how well it is known, for the

domain of the validation effort, past and present.

It is unlikely that this level can be achieved

without grid convergence to the asymptotic
region and without experimental efforts that are

specifically designed for code validation

[Oberkampf and Trucano 2002]. Achieving this
level would seem to require process

documentation, standardization and integration

across the organization with all projects using
approved, tailored versions of the organization's

standard process for maintaining the CA

uncertainty process. Achieving this stage would
allow decision makers to reduce the safety

factors and/or margins required at stage 2,

particularly for predictions which are somewhat

close to the previously explored inference space.

7

4. Reported prediction error. This stage is

distinguished from stage 3 by the ability to

estimate the uncertainty band associated with a
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prediction outside the validation domain,

together with a statement of coverage level and

how well it is known. Clearly, this would

require, in addition to the requirements of stage
3, thorough understanding of model form error in

the validation region as well as in the prediction
inference space [Easterling 2001]. (See the

Inference Space section above for possible ways

to carry out such studies.) For this stage, it may
be possible for decision makers to use the

uncertainty bands to assess risk without safety
factors or margins. However, so little work has
been done in this area that it is not clear if such a

change will ever be warranted. But, for this

stage, it seems appropriate to consider that the

organization that is producing the predictions is
assuming most of the risk.

5. Certification and Protocols. At this stage, the
decision maker should be assuming none of the

risk because the producing organization is

guaranteeing that the prediction uncertainty band
and its coverage level are known. See Lee

[1998] and Pilch [2000] for descriptions of such
activities.

It is important to realize that moving from a lower to
higher CA uncertainty stage requires considerable

effort on the part of all stakeholders. It actually

requires a paradigm shift that is impossible to

appreciate and understand until the stage has been
achieved. Training and education of all of the

stakeholders is essential to make such a shift possible.

Achieving the higher stages requires attempting to

work at those levels and providing the necessary will
and resources.

CLOSING REMARKS

Computational aerodynamics is a rapidly evolving

field that has been widely accepted in engineering

analysis and design. However, uncertainty estimates
are required for computational aerodynamics users

and decision makers to analyze and manage risk. In

this paper we have enumerated the stages of CA

maturity. Each organization will be required to

determine their own needs and work to accomplish
the maturity level adequate to meet their objectives.

Various elements of CA uncertainty have been

outlined. A method to estimate uncertainty at flow
conditions when there is no experimental validation

data has been outlined using the concept of physics
based inference space and the method of strained
coordinates.

A tremendous amount of work remains to develop
techniques to calculate model form uncertainty.
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b) Uncertainty-based CFD
Figure 1.- Alternate views toward computational aerodynamics.

From Zang [2002]and Wahls [2002]
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Figure 3.- Relationships among calibration, validation and inference spaces.

Parameter

space _

'T_) Parameter-based

inference space
differs little from

test domain

Paramet er
space

a) Parameter-based extrapolation b) Physics-based extrapolation
Figure 4.- Computational prediction.
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Figure 5.- Verification and Validation elements for computational aerodynamics.
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Figure 6.- Uncertainty element interactions,
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Figure 7.- Mapping computational uncertainty stages onto decision-maker risk.
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